A Truncated SQP Method Based on Inexact Interior-Point Solutions of Subproblems

نویسندگان

  • Alexey F. Izmailov
  • Mikhail V. Solodov
چکیده

We consider sequential quadratic programming (SQP) methods applied to optimization problems with nonlinear equality constraints and simple bounds. In particular, we propose and analyze a truncated SQP algorithm in which subproblems are solved approximately by an infeasible predictor-corrector interior-point method, followed by setting to zero some variables and some multipliers so that complementarity conditions for approximate solutions are enforced. Verifiable truncation conditions based on the residual of optimality conditions of subproblems are developed to ensure both global and fast local convergence. Global convergence is established under assumptions that are standard for linesearch SQP with exact solution of subproblems. The local superlinear convergence rate is shown under the weakest assumptions that guarantee this property for pure SQP with exact solution of subproblems, namely, the strict Mangasarian–Fromovitz constraint qualification and second-order sufficiency. Local convergence results for our truncated method are presented as a special case of the local convergence for a more general perturbed SQP framework, which is of independent interest and is applicable even to some algorithms whose subproblems are not quadratic programs. For example, the framework can also be used to derive sharp local convergence results for linearly constrained Lagrangian methods. Preliminary numerical results confirm that it can be indeed beneficial to solve subproblems approximately, especially on early iterations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Interior Point Method based Sequential Quadratic Programming Algorithm with Quadaratic Search for Nonlinear Optimization

The field of constrained nonlinear programming (NLP) has been principally challenging to various gradient based optimization techniques. The Sequential quadratic programming algorithm (SQP) that uses active set strategy in solving quadratic programming (QP) subproblems proves to be efficient in locating the points of local optima. However, its efficient determination of the optimal active set h...

متن کامل

The solution of Euclidean norm trust region SQP subproblems via second order cone programs, an overview and elementary introduction

It is well known that convex SQP subproblems with a Euclidean norm trust region constraint can be reduced to second order cone programs for which the theory of Euclidean Jordan-algebras leads to efficient interior-point algorithms. Here, a brief and self-contained outline of the principles of such an implementation is given. All identities relevant for the implementation are derived from scratc...

متن کامل

Integration of Sequential Quadratic Programming and Domain Decomposition Methods for Nonlinear Optimal Control Problems

We discuss the integration of a sequential quadratic programming (SQP) method with an optimization-level domain decomposition (DD) preconditioner for the solution of the quadratic optimization subproblems. The DD method is an extension of the well-known Neumann-Neumann method to the optimization context and is based on a decomposition of the first order system of optimality conditions. The SQP ...

متن کامل

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010